

Drought and Flood in the Anthropocene: Modelling Feedback Mechanisms

Giuliano Di Baldassarre^{1,2}, Fabian Martinez¹, Zahra Kalantari^{3,4}, Alberto Viglione⁵

¹Uppsala University, Department of Earth Sciences, 75236 Uppsala, Sweden
 ²Centre for Natural Disaster Science (CNDS), 75236 Uppsala, Sweden
 ³Stockholm University, Department of Physical Geography, 106 91 Stockholm, Sweden
 ⁴Bolin Centre for Climate Research, 106 91 Stockholm, Sweden
 ⁵Vienna University of Technology, Centre for Water Resource Systems, 1040 Vienna, Austria

10

Correspondence to: Giuliano Di Baldassarre (giuliano.dibaldassarre@geo.uu.se)

Abstract. Over the last few decades, numerous studies have investigated human impacts on drought and flood events, while conversely other studies have explored human responses to hydrological extremes. Yet, there is still little understanding about the dynamics resulting from their interplay, i.e. both impacts

- 15 and responses. Current quantitative methods therefore fail to assess future risk dynamics and, as a result, while risk reduction strategies built on these methods often work in the short term, they can lead to unintended consequences in the longer term. In this paper, we review the puzzles and dynamics resulting from the interplay of society and hydrological extremes, and describe our initial efforts to model hydrological extremes in the Anthropocene. In particular, we first discuss the need for a novel approach
- 20 to explicitly account for human interactions with both drought and flood events, and then present a stylized model simulating the reciprocal effects between water management and hydrological extremes. Lastly, we highlight the unprecedented opportunity offered by the current proliferation of big data to unravel the coevolution of hydrological extremes and society across scales, and along gradients of social and hydrological conditions.

1 Introduction

Throughout history, human societies have been severely impacted by hydrological extremes, i.e. drought and flood events. The collapse of various ancient civilizations, for instance, has been attributed to the occurrence of hydrological extremes (e.g. Munoz et al., 2015). Fatalities and economic losses caused by

- 5 drought and flood events have dramatically increased in many regions of the world over the past decades (Di Baldassarre et al., 2010; Winsemius et al., 2015) and, currently, more than 100 million people per year are affected by hydrological extremes (UN-ISDR, 2016). There is serious concern about future hydrological risk (broadly defined here as a combination of hazard, vulnerability and exposure) given the potentially negative impact of climatic and socio-economic changes (Hallegatte et al., 2013; Jongman et
- 10 al., 2014; IPCC, 2014). Thus, it is essential to realistically capture where, how and why risk will plausibly change in the coming decades, and develop appropriate policies to reduce the negative impacts of hydrological extremes, e.g. economic losses and fatalities, while retaining the benefits of hydrological variability, e.g. supporting biodiversity and ecosystem functions.

Human societies have (intentionally or accidentally) altered the frequency, magnitude and spatial
distribution of flood and drought events (Falkenmark and Rockström, 2008; Di Baldassarre et al., 2009;
Vörösmarty et al., 2013; Montanari et al., 2013; AghaKouchak et al., 2015). Dams and reservoirs are

- examples of water management measures that deliberately change hydrological variability (Ye et al., 2003) and significantly affect hydrological extremes, as schematically depicted in Figure 1.
 Moreover, water abstraction and irrigation have a significant impact on the occurrence of hydrological
- 20 drought (Van Loon et al., 2016); while flood protection measures, such as levees, alter the frequency, magnitude and spatial distribution of flood events (Di Baldassarre et al., 2009; Blöschl et al., 2013; Heine and Pinter, 2012). Hydrological extremes can also be affected by other human activities such as land-use change, deforestation, urbanisation, drainage of wetlands and agricultural practices (Kalantari et al., 2014; Savenije et al., 2014; Destouni et al., 2015).
- 25 While human societies shape hydrological extremes, hydrological extremes in turn shape human societies. Following the impact of drought or flood events, humans respond and adapt to hydrological extremes through a combination of spontaneous processes and deliberate strategies that can lead to changes in social contracts (Adger et al., 2013). Adaptive responses can take place at the individual, community or

institutional level (Myers et al., 2008; Penning-Rowsell et al., 2013). Early warning systems, risk awareness programs, and changes of land-use planning are examples of adaptive responses that often occur at the local or central government level following hydrological extremes (Pahl-Wostl et al., 2013). Moreover, structural risk reduction measures, such as reservoirs or levees, are also planned, implemented

- 5 or revised after the occurrence of drought or flood events, and they in turn (again) change the frequency, magnitude and spatial distribution of hydrological extremes (Di Baldassarre et al., 2013a). In the recent decades, natural and engineering scientists have analysed numerous facets of human impacts on drought and flood events, while conversely economists and social scientists have explored human responses to hydrological extremes. Yet, the dynamics resulting from the mutual shaping (i.e. both
- 10 impacts and responses) of hydrological extremes and societies are still not well understood. As a result, current quantitative methods fail to assess the dynamics of hydrological risk and, while risk reduction strategies built on these methods often work in the short term, they can lead to unintended consequences in the long term. To overcome this lack of knowledge, there has been increasing interest in socio-hydrology in the last few years (e.g. Sivapalan et al., 2012; Srinivasan et al., 2012; Di Baldassarre et al.,
- 15 2013b; Montanari et al., 2013; Viglione et al., 2014; Elshafey et al., 2014; van Emmerick et al., 2014; Sivapalan and Bloeschl, 2015, Loucks, 2015; Troy et al., 2015; Gober and Weather, 2015; Pande and Savenije, 2016; Blair and Buytaert, 2016), which aims to develop fundamental science underpinning integrated water resources management (IWRM). Socio-hydrology builds on a long tradition of studies exploring the interplay of nature and society and the implications for sustainability, including political
- 20 ecology, social-ecological systems, ecologic economics, complex system theories and research on planetary boundaries (Swyngedouw, 1999; Folke et al., 2005; Liu et al., 2007; Ostrom, 2009; Rockström et al., 2009; Kallis and Norgaard, 2010).

In this context, this paper describes the puzzles and dynamics emerging from the interplay of society and hydrological extremes, discusses the need for a novel approach to explicitly account for both drought and

25 flood events, and presents initial efforts to model hydrological extremes in the Anthropocene.

2 Emerging dynamics and puzzles

Various dynamics result from the interactions between human societies and hydrological extremes. Learning or adaptation effects emerge when more frequent events are associated with decreasing vulnerability (Di Baldassarre et al., 2015). This effect can be attributed to informal adaptive processes,

- 5 such as temporary and permanent migration, or changes in policies triggered by the occurrence of hydrological extremes (Pahl-Wostl et al., 2013). For instance, Mechler and Bouwer (2014) showed decreasing flood fatalities in Bangladesh over the past 40 years (Figure 2, left panel). This reduced vulnerability can be attributed to coping and adaptation capacities gained by individuals or communities after the experience of extreme events.
- 10 Societies are not only shaped by the occurrence of hydrological extremes, but also by the perception of current and future risk (Dessai and Sims, 2010). This can explain the emergence of what is termed here as the forgetting or levee effect, i.e. less frequent events associated with increasing vulnerability. Since White (1945), the literature has provided various examples that show that the negative impact of an extreme event tends to be greater if such an event occurs after a long period of calm. Prolonged absence
- 15 of drought or flood events can be caused by climatic factors (e.g. flood-poor periods; Hall et al., 2014) or the introduction of structural risk reduction measures, such as reservoirs (Figure 1). One example is the case of Brisbane, where the introduction of a flood retention reservoir in the 1970s has shaped risk perception in the local community, which perceived Brisbane as flood-proof until a catastrophic flood event occurred in 2011 (Bohensky and Leitch, 2014).
- 20 Learning and forgetting effects have been reported in different parts of the world in a variety of empirical studies, e.g. collection of case studies reported in Di Baldassarre et al. (2015). The emergence of these dynamics suggests the intuitive tendency that the impact of drought or flood events depend on whether their occurrence is expected or not. Yet, these dynamics have mainly been reported as narratives in specific case studies. It is still unclear whether they are exceptional cases or generic mechanisms, and
- 25 whether they occur randomly or within certain social and hydrological circumstances. This lack of knowledge prevents their explicit inclusion on the analytical tools that undertake a quantitative assessment of hydrological risk.

Besides the inability to capture learning and forgetting dynamics, traditional methods for risk assessment cannot explain interactions between floods, droughts and water management as they focus on either drought or flood hazard (e.g. Shahid and Behrawan, 2008; Jongman et al., 2014). For instance, while reservoirs theoretically alleviate both flood and drought events (Figure 1), reservoir operation rules

- 5 (Mateo et al., 2014) mitigating drought are different from the ones mitigating flood. To cope with drought, reservoirs are typically kept as full as possible, working as a buffer during low flow conditions, whereas to cope with flood, reservoirs are often kept as empty as possible, allowing the storage of a large quantity of water from extreme rainfall or rapid snow melt conditions. These reservoir operation rules can change over time depending on various factors, including whether the most recently experienced disaster was
- 10 caused by a drought or a flood event. As a result, the negative impact of flood events occurring immediately after a long period of drought conditions can be exacerbated. For example, the aforementioned catastrophic 2011 flooding of Brisbane occurred after an exceptionally long, multi-year drought (the so-called "Millennium Drought"; Van Dijk et al., 2013), which triggered changes in reservoir management (van den Honert and John McAneney, 2013). In particular, operation
- 15 rules of the flood mitigation reservoir build in 1970s were changed, and the reservoir was used instead as a buffer to cope with drought conditions. This change in operation rules led to higher water levels in the reservoir, which was then less unable to store much water and alleviate the 2011 flood event. Meanwhile, paradoxically, the presence of the reservoir triggered the popular belief that Brisbane was flood proof and made the population more vulnerable. The combination of these events made the 2011 flooding a major
- 20 disaster (Bohensky and Leitch, 2014). Research on climate change suggests that many regions around the world might experience, in the near future, alternate periods with prolonged drought conditions and extreme flood events (IPCC, 2014). Thus, it is vital to understand if (and how) human responses to drought events might exacerbate the impact of future floods, and vice versa.
- 25 Furthermore, a focus on either drought or flood events can limit the interpretation of the role of global drivers of hydrological risk, such as climatic and socio-economic changes. For example, a number of recent studies (e.g. Di Baldassarre et al., 2010; Winsemius et al., 2015) have shown that socio-economic changes have been the main driver of increasing flood risk in Africa, while climate has (so far) played a

smaller role. Yet, by focusing on flood risk alone, these studies did not consider the hypothesis that climate may have led to longer and more severe drought conditions, which in turn have enhanced the need for individuals and communities to move closer to rivers, thus leading to greater exposure to flooding. Thus, it is still largely unexplored how sequences of drought and flood events make a difference in the

5 dynamics of hydrological risk. This puzzle requires further research on the mutual shaping of human societies and hydrological extremes, to which this paper aims to contribute.

3 Hydrological extremes in the Anthropocene

To reveal the aforementioned dynamics resulting from the mutual shaping of hydrological extremes and society, there is a need for both empirical and theoretical research exploring numerous river basins,

- 10 floodplains and cities as coupled human-water systems. Figure 3 schematizes how internal feedback mechanisms within the systems consist of: i) impacts and perceptions of hydrological extremes that shape society in terms of demography, institution and governance, and ii) policies and measures implemented by society that shape hydrological extremes in terms of frequency, magnitude and spatial distribution. These internal dynamics also interact with external drivers of change operating on larger or global scales
- 15 (Figure 3), i.e. climatic and human influences outside the system (Turner et al., 2003). One of the challenges in unravelling the interplay of hydrological extremes and society is the different time and space scales of drought and flood events. While the duration of flood events ranges from hours to days, drought has much longer lifetimes, in the order of weeks, months or even years. Similarly, spatial scales of flood events are typically smaller than those of drought conditions (Van Loon, 2015). As a result,
- 20 the integrated effects of these hydrological extremes on society and the associated feedback loops are significantly different. For instance, at level of crisis management, more time for decision making is available in the case of drought than for flood events. Also, while some flood protection measures can decided and implemented at the local level within one or few municipalities, drought policies require agreements at regional scales.
- 25 Yet, water management policies account for both hydrological extremes. Moreover, for large river basins, the periodicity or clustering of drought and flood events seem to be more coherent in time and space. This due to mass balance reasons as well as the fact that flood and drought periods are often produced by

atmospheric blocking (e.g. Francis and Vavrus, 2012). Lastly, as mentioned in the previous section, the dynamics of human impacts on flood events depend on human responses to drought events, and vice versa. Thus, in the Anthropocene, it is essential to consider both hydrological extremes.

In this context, we present a new model that mimic the interplay between water management and

- 5 hydrological extremes. This conceptualisation builds on similar efforts that were recently made in sociohydrology (Di Baldassarre et al., 2013b; 2015; Viglione et al., 2014; Kuil et al., 2016), which modelled either drought or flood events, but not both hydrological extremes. Our model focuses on the human impact on water storage via reservoirs. As the model aims to explore emerging patterns resulting from generic mechanisms, it was not based on site specific rules of operation or optimization methods. Instead,
- 10 the model was inspired by the criticism of rational decision making and optimization made by numerous scholars following the work of the Nobel laureate Daniel Kahneman. In particular, Tversky and Kahneman (1973) formulated the availability heuristic as the bias due to the fact that decision makers estimate the probability of events not only based on robust evidence, but also "by the ease with which relevant instances come to mind". Tversky and Kahneman (1973) showed that this judgmental heuristic
- 15 leads to systematic biases. By extending this concept, we develop a stylised model that simulate the mutual shaping of hydrological extremes and water management. The model is based on the use of a reservoir, which is used to schematically characterise changes in water storage caused by human activities (Figure 1), In particular, by considering a time series of natural river discharge (Q_N) as inflow, the actual river discharge (Q) can be derived as outflow from the variation in
- 20 time of the reservoir storage (S) using a mass balance equation:

$$Q = Q_N - \frac{dS}{dt} \tag{1}$$

By assuming a linear reservoir with a storage coefficient (k), the actual river discharge is related to the volume of water stored in the reservoir (S) as:

$$Q = \frac{S}{k} \tag{2}$$

To capture the typically high release of water when reservoirs are full, e.g. overflows, we assume that if the storage (S) is above a certain threshold (S_{max}) , the actual river discharge will have an additional

component which is, for the sake of simplicity, linearly proportional to the difference between *S* and S_{max} with an overflow coefficient (α):

$$Q = \frac{S}{k} + \frac{(S - S_{max})}{\alpha} \tag{3}$$

We then use a dynamically changing storage coefficient (k) to explain the changing rules for reservoir operation. This storage coefficient is estimated as a weighted average between a value that allows to have

5 enough volume available during major flood events (k_f) , and a different value that enables to keep enough water in the reservoir to cope with drought conditions (k_d) :

$$k = \frac{M_f \cdot k_f + M_d \cdot k_d}{M_f + M_d} \tag{4}$$

Equation (4) shows that the weights are given by two contrasting memories of the reservoir management system, i.e. flood memory (M_f) and drought memory (M_d) , which are assumed to change over time depending of actual flow conditions:

$$\frac{dM_f}{dt} = \mu \left(\frac{Q^{\beta}}{Q_{N,mean}^{\beta}} - M_f \right)$$
(5)

$$\frac{dM_d}{dt} = \mu \left(\frac{Q_{N,mean}^\beta}{Q^\beta} - M_d \right) \tag{6}$$

- 10 Equations (5) and (6) formalize our assumption that flood memory is accumulated more than drought memory during high flow conditions ($Q > Q_{N,mean}$), while drought memory is accumulated more than flood memory during low flow conditions ($Q < Q_{N,mean}$). This assumption is inspired by the aforementioned availability heuristic (Tversky and Kahneman, 1973) and based on the empirical evidence that preparedness is very high immediately after the occurrence of extreme events that often lead to
- 15 additional pressure for changes in water management. For example, Hanak (2011)reports the decline in flood insurance coverage in California after the 1997 Central Valley flooding (Figure 4). Equations (5) and (6) also describe that both drought and flood memories diminish exponentially over time with a decay rate μ. This assumption is based on previous models of human-flood interactions (Di Baldassarre et al., 2013b; 2015; Viglione et al., 2014; Grames et al., 2016), as well as scientific work on
- 20 individual and collective memory (Anastasio et al., 2012).

The exponent β in equations (3) and (4) is used to characterize the level of bias caused by the difference between drought and flood memories. In particular, for $\beta = 0$ both memories tend to the value of 1 over time, and *k* becomes constant. This can be used to describe a rational decision making system whereby the proportion between k_d and k_f is derived with an optimal design of the reservoir to balance relative

5 weights of drought and flood events. Increasing β , indicates increasing bias as more dynamic variations of M_d and M_f occur during periods of high or low flow conditions, and consequently faster changes in reservoir operation rules. As a summary, Tables 1 and 2 report the state variables and time invariant parameters, respectively, of the stylised model presented here.

To show an example of the dynamics captured by this model, we compare the results obtained with 10 variable reservoir operation rules, which depend on the changing drought and flood memories, with the results obtained by using fixed storage coefficient to cope with either drought or flood events (Figure 5). This virtual experiment is run by solving the differential equations numerically with a finite difference method, and using flow data of the river Brisbane as input, i.e. times series of natural river discharge (Q_N). Figure 5 shows the shift of reservoir management and how actual river flows result from changes in

15 operation rules. In particular, Figure 5 shows that the 2011 flood event would have had a much lower discharge if the reservoir operations aimed to cope with flood, but prolonged low flow conditions in the previous decade led to reservoir operations that enable to better cope with drought, i.e. keep more water in the reservoir instead, which lead to overflow and therefore enhanced flood levels. A plausible interpretation of the 2011 Brisbane flooding.

20 4 Conclusions and perspectives

This paper described an initial attempt to study the coevolution of water management and hydrological extremes. This is considered a first step in a broad research agenda that includes both empirical and theoretical work to uncover the mutual shaping of hydrological extremes and society (Figure 3). In particular, as described by McDonald (1989) and then discussed by Di Baldassarre et al. (2016), the

25 development of new knowledge typically require research efforts that can be classified into five main steps: 1. Data collection and analysis; 2. Examination of these data to determine salient facts that still need a formal explanation; 3. Theory development via formulation of models capturing the salient facts;

4. Model calibration, validation and uncertainty analysis; and 5. Application of models to support the decision making process. As discussed by McDonald (1989), some scientists are deeply "engaged in work that refines or makes use of the generally accepted model" (steps 4 and 5), while others are "in the process of questioning the generally accepted model" (steps 1-3). To better understand drought and flood events

5 in the Anthropocene, we believe that research efforts should focus on steps 1-3, since coevolutionary dynamics are still largely unknown. In particular, to develop socio-hydrological theory, there is a need for iterations between historical analyses of case studies and formal explanations of the salient facts via stylized models, such as the one presented in this paper.

Besides case studies and dynamic models, an unprecedented opportunity to explore coevolutionary dynamics across spatio-temporal scales and socio-hydrological gradients is offered nowadays by the recent proliferation in global remote sensing data and worldwide archives at relatively high spatial (between 100m and 5km) and temporal (between one day and one year) resolution. In particular, by referring to the feedback loop in Figure 3, useful sources of data include: *Hydrological extremes*: outcomes of global hydrological models; worldwide river flow archives (Hannah et al., 2011); drought

- 15 and flood inundation maps derived from satellite imagery (Di Baldassarre et al., 2011); *Impacts and perceptions*: global database of damage caused by droughts and floods (EM-DAT); social media such as Twitter and Facebook; *Society*: global population data and maps of human settlements (Linard et al., 2012); satellite nightlights as proxies for economic growth and human population density (Ceola et al., 2014); *Policies and measures*: global maps of land-use, irrigation, dams and reservoirs (Bierkens, 2015);
- 20 information about flood protection standards in different countries (Scussolini et al., 2016). Global comparative analyses can capitalize on this flood of data and explore whether the emerging dynamics and puzzles described in this paper are either site-specific cases that occur randomly or general patterns that emerge under specific social and hydrological conditions.
- 25 Acknowledgements. The present work was developed within the framework of the Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS), within the working groups on "Changes in Flood Risk" and "Drought in the Anthropocene". Brisbane river data were downloaded

from the Water Monitoring Information Portal of Queensland Government, Department of Natural Resources and Mines (DNRM).

References

Adger, W.N., Quinn, T., Lorenzoni, I., Murphy, C., and Sweeney, J.: Changing social contracts in climate-

- change adaptation. Nature Climate Change, 3(4), 330-333, 2013.
 AghaKouchak, A., Feldman, D., Hoerling, M., Huxman T., and Lund J.: Recognizing Anthropogenic Droughts. Nature, 524, 409–411, 2015.
 Aldrete, G.S.: Floods of the Tiber in Ancient Rome. Johns Hopkins University Press, 2007.
 Anastasio, T. J., Ehrenberger, K. A., Watson, P., & Zhang, W.: Individual and collective memory
- consolidation: Analogous processes on different levels. MIT Press, 2012.
 Bierkens, M.F.P.: Global hydrology 2015: State, trends, and directions, Water Resour. Res., 51, 4923–4947, 2015.
 Plair, P. and Puntaert, W.: Socio, hydrological modelling: a raviau asking "why what and how?", Hydrol.

Blair, P. and Buytaert, W.: Socio-hydrological modelling: a review asking "why, what and how?", Hydrol. Earth Syst. Sci., 20, 443-478, doi:10.5194/hess-20-443-2016, 2016.

- Blöschl, G., Nester, T., Komma, J., et al.: The June 2013 flood in the Upper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods, Hydrol. Earth Syst. Sci., 17, 5197-5212, 2013.
 Burton, C. and Cutter S.L.: Levee failures and social vulnerability in the Sacramento-San Joaquin Delta area, California. Natural Hazards Review, 9(3): 136-149, 2008.
 Ceola, S., Laio, F., and Montanari A.: Satellite night-time lights reveal increasing human exposure to
- floods worldwide, Geophys. Res. Lett., 41, 7184–7190, 2013.
 Ciullo A., Viglione, A., Castellarin, A., Di Baldassarre, G.: Socio-hydrological modelling of flood risk dynamics, Hydrological Sciences Journal, in press, 2016.
 Costanza, R., d'Arge R., de Groot R., et al.: The value of the world's ecosystem services and natural capital. Nature, 387, 253-260, 1997.
- 25 Dessai, S., and Sims, C.: Public perception of drought and climate change in southeast England. Environmental hazards, 9(4), 340-357, 2010.

Destouni, G., Jaramillo, F., & Prieto, C.: Hydroclimatic shifts driven by human water use for food and energy production. Nature Climate Change, 3(3), 213-217, 2013.

Di Baldassarre, G., A. Castellarin, and Brath A.: Analysis on the effects of levee heightening on flood propagation: some thoughts on the River Po, Hydrological Sciences Journal, 54(6), 1007-1017, 2009.

- 5 Di Baldassarre, G., A. Montanari, H. Lins, D. Koutsoyiannis, L. Brandimarte, and Bloeschl G.: Flood fatalities in Africa: from diagnosis to mitigation, Geophysical Research Letters, 37, L22402, 2010. Di Baldassarre, G., G. Schumann, L. Brandimarte, and Bates P.D. Timely low resolution SAR imagery to support floodplain modelling: a case study review, Surveys in Geophysics, 32(3), 255-269, 2011. Di Baldassarre, G., Kooy, M., Kemerink, J. S., and Brandimarte L.: Towards understanding the dynamic
- behaviour of floodplains as human-water systems, Hydrology and Earth System Sciences, 17, 3235-3244, doi:10.5194/hess-17-3235-2013, 2013a.
 Di Baldassarre, G., A. Viglione, G. Carr, L. Kuil, J. L. Salinas, and Blöschl G.: Socio-hydrology: conceptualising human-flood interactions, Hydrology and Earth System Sciences, 17(8), 3295-3303, doi:10.5194/hess-17-3295-2013b.
- 15 Di Baldassarre, G., A. Viglione, G. Carr, et al.: Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes, Water Resour. Res., 51, 4770–4781, doi:10.1002/2014WR016416, 2015.

Elshafei, Y., Sivapalan, M., Tonts, M., and Hipsey, M. R.: A prototype framework for models of sociohydrology: identification of key feedback loops and parameterisation approach, Hydrol. Earth Syst. Sci.,

20 18, 2141–2166, doi:10.5194/hess-18-2141- 2014, 2014.

Falkenmark, M., and Rockström, J.: Building resilience to drought in desertification-prone savannahs in Sub-Saharan Africa: The water perspective. Natural Resources Forum, Vol. 32, No. 2, 93-102. Blackwell Publishing Ltd, 2008.

Francis, J.A., and Vavrus S.J.: Evidence linking Arctic amplification to extreme weather in mid-latitudes.

 Geophysical Research Letters 39(6), 2012.
 Folke, C., Hahn, T., Olsson, P., and Norberg J.: Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour., 30, 441–73, 2005.

Gober, P. and Wheater, H. S.: Debates-Perspectives on sociohydrology: Modeling flood risk as a public policy problem, Water Resour. Res., 51, 4782–4788, doi:10.1002/2015WR016945, 2015.
Grames, J., Prskawetz, A., Grass, D., Viglione, A., and Blöschl, G.: Modeling the interaction between flooding events and economic growth. Ecological Economics, 129, 193-209, 2016.

- 5 Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T. R., Kriaučiūnienė, J., Kundzewicz, Z. W., Lang, M., Llasat, M. C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R. A. P., Plavcová, L., Rogger, M., Salinas, J. L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., and Blöschl, G.: Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735-2772,
- doi:10.5194/hess-18-2735-2014, 2014.
 Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future flood losses in major coastal cities.
 Nature Climate Change, 3(9), 802-806, 2013.
 Hanak, E.: Managing California's water: from conflict to reconciliation. Public Policy Instit. of CA, 2011.
 Hannah, D. M., Demuth, S., van Lanen, H. A., et al.: Large-scale river flow archives: importance, current
- 15 status and future needs. Hydrological Processes, 25(7), 1191-1200, 2011.
 Heine, R.A., and Pinter N.: Levee effects upon flood levels: an empirical assessment. Hydrological Processes, 26, 3225–3240, 2012.
 Hurlbert, M. and Gupta, J.: Adaptive Governance, Uncertainty, and Risk: Policy Framing and Responses to Climate Change, Drought, and Flood. Risk Analysis. doi: 10.1111/risa.12510, 2015.
- IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2014.
 Jongman, B., Hochrainer-Stigler S., Feyen L., et al.: Increasing stress on disaster-risk finance due to large floods. Nature Climate Change, 4, 264–268, 2014.
 Ye, B., D. Yang, and Kane D. L.: Changes in Lena River streamflow hydrology: Human impacts versus
- 25 natural variations, Water Resour. Res., 39, 1200, 2003.
 Linard, C., and Tatem A.J.: Population mapping of poor countries. Nature, 474, 36, 2011.
 Liu J. et al.: Complexity of Coupled Human and Natural Systems, Science, 317(5844): 1513-1516, 2007.

Loucks, D. P.: Debates-Perspectives on socio-hydrology: Simulating hydrologic-human interactions, Water Resour. Res., 51, 4789–4794, doi:10.1002/2015WR017002, 2015.

Ludy J., and Kondolf G.M.: Flood risk perception in lands "protected" by 100-year levees. Natural Hazards, 61(2), 829-842, 2012.

5 Kahneman, D., and Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica, 47 (2), 263–292, 1979.

Kalantari Z., Lyon S.W., Folkeson L., French H.K., Stolte J., Jansson P-E., Sassner M.: Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment. Science of the Total Environment, 466-467, 741-754, 2014.

10 Mateo, C. M., N. Hanasaki, D. Komori, et al.: Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models, Water Resour. Res., 50, 7245–7266, 2014.

Merz, B., Vorogushyn, S., Uhlemann, S., Delgado, J., and Hundecha, Y.: More efforts and scientific rigour are needed to attribute trends in flood time series. Hydrology and Earth System Sciences, 16, 1379-

15 1387, 2012.

Myers, C.A., Slack, T., Singelmann, J.: Social vulnerability and migration in the wake of disaster: the case of Hurricanes Katrina and Rita. Population and Environment, 29(6), 271-291, 2008.

Montanari, A., G. Young, H.H.G. Savenije, et al.: "Panta Rhei - Everything Flows": Change in hydrology and society - The IAHS Scientific Decade 2013–2022, Hydrological Sciences Journal, 20 doi:10.1080/02626667.2013.809088, 2013.

Opperman, J.J., Galloway G.E., Fargione J., Mount J.F., Richter B.D., Secchi S.: Sustainable floodplains through large-scale reconnection to rivers. Science, 326, 1487-1488, 2009.

Ostrom, E.: A general framework for analysing sustainability of social-ecological systems. Science, 325, 419–422, 2009.

25 Kallis, G., and Norgaard, R. B.: Coevolutionary ecological economics. Ecological Economics, 69(4), 690-699, 2010.

Pahl-Wostl, C., Becker, G., Knieper, C. and Sendzimir, J.: How multilevel societal learning processes facilitate transformative change: a comparative case study analysis on flood management. Ecology and Society, 18(4), 58, 2013.

Pappenberger, F., Dutra, E., Wetterhall, F., and Cloke, H.: Deriving global flood hazard maps of fluvial

- 5 floods through a physical model cascade, Hydrol. Earth Syst. Sci., 16, 4143-4156, 2012. Parker, G.A. and Smith J.M.: Optimality theory in evolutionary biology, Nature, 348, 27-33, 1990. Penning-Rowsell, E.C., Sultana, P. and Thompson P.M.: The last resort? Population movement in response to climate-related hazards in Bangladesh. Environmental Science and Policy, 27, 44-59, 2013. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer,
- 10 M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., and Foley, J. A.: A safe operating space for humanity, Nature, 461, 472–475, doi:10.1038/461472a, 2009. Savenije, H.H.G., Hoekstra, A.Y., and van der Zaag P.: Evolving water science in the Anthropocene,
- Hydrology and Earth System Sciences, 18, 319-332, 2014.
 Scheffer, M., Carpenter, S. R., Foley, J. A., Folke, C., and Walker, B.: Catastrophic shifts in ecosystems, Nature, 413, 591–596, 2001.
 Schultz, J. and Elliott, J.R.: Natural disasters and local demographic change in the United States, Population and Environment, 34, 293–312, 2012.
- 20 Scolobig, A., De Marchi, B., and Borga, M.: The missing link between flood risk awareness and preparedness: findings from case studies in an Alpine Region, Natural Hazards, 63, 499–520, 2012. Scussolini, P., Aerts, J. C. J. H., Jongman, B., Bouwer, L. M., Winsemius, H. C., de Moel, H., and Ward, P. J.: FLOPROS: an evolving global database of flood protection standards, Nat. Hazards Earth Syst. Sci., 16, 1049-1061, doi:10.5194/nhess-16-1049-2016, 2016.
- Shahid, S., and Behrawan, H.: Drought risk assessment in the western part of Bangladesh. Natural Hazards, 46(3), 391-413, 2008.
 Sivapalan, M., and Bloeschl G.: Time scale interactions and the coevolution of humans and water, Water Resour. Res., 51, 6988–7022, 2015.

Sivapalan, M. and H.G. Savenjie and Blöschl G.: Socio-hydrology: A new science of people and water, Hydrological Processes, 26(8), 1270-1276, 2012.

Swyngedouw, E.: Modernity and hybridity: nature, regeneracionismo, and the production of the Spanish waterscape, 1890–1930. Annals of the Association of American Geographers, 89(3), 443-465, 1999.

5 Taleb N.N.: The Black Swan: The Impact of the Highly Improbable. New York: Random House and Penguin. ISBN 978-1-4000-6351-2, 2007.

Tenbensel, T.: Multiple modes of governance, Public Management Review 7(2): 267-288, 2005. Thompson, M., R. Ellis, and Wildavsky A.: Cultural theory. Political cultures, Westview Press, 1990. Trambauer, P., Maskey, S., Werner, M., et al.: Identification and simulation of space–time variability of

past hydrological drought events in the Limpopo River basin, southern Africa, Hydrol. Earth Syst. Sci.,
 18, 2925-2942, 2014.

Troy, T. J., Konar, M., Srinivasan, V., and Thompson, S.: Moving sociohydrology forward: a synthesis across studies, Hydrol. Earth Syst. Sci., 19, 3667–3679, doi:10.5194/hess-19-3667-2015, 2015. Turner, B.L., Kasperson, R. E., Matson, P. A., et al.: A framework for vulnerability analysis in

- sustainability science. Proceedings of the National Academy of Sciences, 100(14), 8074-8079, 2003.
 Turner, M.D.: Climate vulnerability as a relational concept. Geoforum, 68, 29–38, 2016.
 UN-ISDR: Flood and drought disaster statistics collected by the United Nations Office for Disaster Risk Reduction, available on www.preventionweb.net, retrieved on 20/01/2016.
 Van Dijk A.I.J.M., Beck H.E., Crosbie R.S., et al.: The Millennium Drought in southeast Australia (2001-
- 20 2009): Natural and human causes and implications for water resources, ecosystems, economy, and society: Water Resour Res 49, 1040–1057, 2013.
 Van Emmerik, T. H. M., Li, Z., Sivapalan, M., Pande, S., Kandasamy, J., Savenije, H. H. G., Chanan, A., and Vigneswaran, S.: Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River Basin, Australia,
- Hydrol. Earth Syst. Sci., 18, 4239–4259, doi:10.5194/hess-18-4239- 2014, 2014.
 Van Loon, A.F., Hydrological drought explained. WIREs Water, 2:359–392, 2015.
 Van Loon, A.F., Gleeson, T., Clark, J. et al.: Drought in the Anthropocene. Nature Geoscience, 2016.

Van Ogtrop, F.F., Hoekstra, A.Y., and van der Meulen, F.: Flood management in the lower Incomati River Basin, Mozambique: two alternatives. Journal of the American Water Resources Association, 41(3), 607-619, 2005.

Vörösmarty, C.J., Pahl-Wostl, C., Bunn, S. E., and Lawford, R.: Global water, the Anthropocene and the

5 transformation of a science. Current Opinion in Environmental Sustainability, 5(6), 539-550, 2013. Ye, B., D. Yang, and Kane D.L.: Changes in Lena River streamflow hydrology: Human impacts versus natural variations, Water Resour. Res., 39(7), 1200, 2003.

Wachinger, G., Renn, O., Begg, C., and Kuhlicke, C.: The Risk Perception Paradox-Implications for Governance and Communication of Natural Hazards, Risk Analysis, 33, 1049–1065, 2012.

 Wescoat, J. L.: Reconstructing the duty of water: A study of emergent norms in socio-hydrology, Hydrol. Earth Syst. Sci., 17, 4759–4768, 2013.
 White, G.F.: Human Adjustments to Floods. Department of Geography Research Paper no. 29. Chicago, 1945.

Winsemius, H.C., Aerts, J.C.J.H., Van Beek, et al.: Global drivers of future river flood risk. Nature 15 Climate Change, doi:10.1038/nclimate2893, 2015.

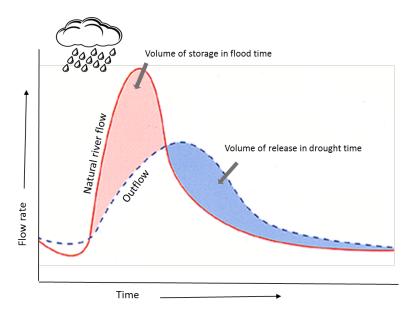


Figure 1: Human impact on hydrological extremes. Schematic example of the impact of dams and reservoirs, which tend to mitigate both hydrological extremes, i.e. lower flows during flood events and higher flows during drought conditions.

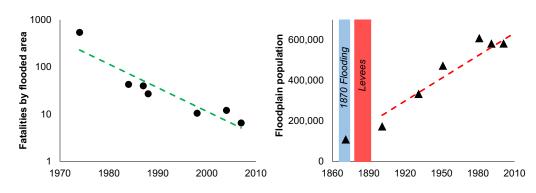


Figure 2. Learning and forgetting effects. The left panel shows decreasing flood fatalities normalized by flooded area in Bangladesh (data from Mechler and Bouwer, 2014), while the right panel shows increasing population in flood-prone areas in Rome (Italy), following a prolonged absence of flooding due to the construction of levees (data from Ciullo et al., 2016).

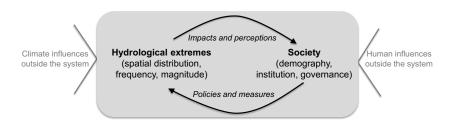


Figure 3: Hydrological extremes in the Anthropocene. Internal feedbacks within the human-water system at the local scale (in black) and external drivers of change that operate at larger/global scale (in grey).

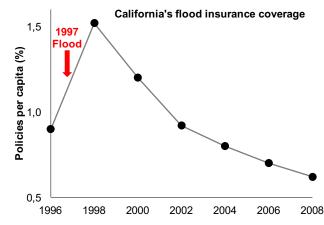


Figure 4: Changing memory and preparedness. Flood insurance coverage in California, which peaked after the 1997 Central Valley flood, and then decayed over time (data from Hanak, 2011).

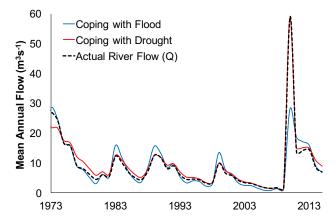


Figure 5: Example of modelling flood and drought in the Anthropocene. The diagram shows the result of a model run: actual river flows (black dash line) that result from changing norms in reservoir management between operation rules aiming to better cope with flood (blue line) and operation rules aiming to better cope with drought (red line).

5

Table 1. Summary of time varying variables of the stylised model.

	Units	Description	Туре
M_{f}	[.]	societal memory of floods	state
M_d	[.]	societal memory of droughts	state
Q	$[L^3/T]$	actual river flow	state

Table 2. Summary of time invariant parameters of the stylised model.

	Units	Description
k_f	[T]	storage coefficient to cope with flood
k_d	[T]	storage coefficient to cope with drought
μ	[1/T]	memory decay rate
α	[T]	overflow coefficient
β	[.]	bias parameter
Smax	$[L^3]$	maximum reservoir storage

